On the design of higher-order FEM satisfying the discrete maximum principle

نویسنده

  • Dmitri Kuzmin
چکیده

A fully algebraic approach to the design of nonlinear high-resolution schemes is revisited and extended to quadratic finite elements. The matrices resulting from a standard Galerkin discretization are modified so as to satisfy sufficient conditions of the discrete maximum principle for nodal values. In order to provide mass conservation, the perturbation terms are assembled from skew-symmetric internodal fluxes which are redefined as a combination of firstand second-order divided differences. The new approach to the construction of artificial diffusion operators is combined with a node-oriented limiting strategy. The resulting algorithm is applied to P1 and P2 approximations of stationary convection-diffusion equations in 1D/2D.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete maximum principle for higher-order finite elements in 1D

We formulate a sufficient condition on the mesh under which we prove the discrete maximum principle (DMP) for the one-dimensional Poisson equation with Dirichlet boundary conditions discretized by the hp-FEM. The DMP holds if a relative length of every element K in the mesh is bounded by a value H∗ rel(p) ∈ [0.9, 1], where p ≥ 1 is the polynomial degree of the element K. The values H∗ rel(p) ar...

متن کامل

Optimal Design of Single-Phase Induction Motor Using MPSO and FEM

In this paper, a new approach is proposed for the optimum design of single-phase induction motor. By using the classical design equations and the evolutionary algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Modified Particle Swarm Optimization (MPSO), a Single Phase Induction Motor (SPIM) was designed with the maximum efficiency. The Finite Element Method (FEM)...

متن کامل

An Algebraic Flux Correction Scheme Satisfying the Discrete Maximum Principle and Linearity Preservation on General Meshes

This work is devoted to the proposal of a new flux limiter that makes the algebraic flux correction finite element scheme linearity and positivity preserving on general simplicial meshes. Minimal assumptions on the limiter are given in order to guarantee the validity of the discrete maximum principle, and then a precise definition of it is proposed and analyzed. Numerical results for convection...

متن کامل

Maximum-Principle-Satisfying Third Order Discontinuous Galerkin Schemes for Fokker-Planck Equations

We design and analyze up to third order accurate discontinuous Galerkin (DG) methods satisfying a strict maximum principle for Fokker–Planck equations. A procedure is established to identify an effective test set in each computational cell to ensure the desired bounds of numerical averages during time evolution. This is achievable by taking advantage of the two parameters in the numerical flux ...

متن کامل

Stability analysis of support systems using a coupled FEM-DFN model (Case study: a diversion tunnel at Lorestan dam site, Iran)

Various structural discontinuities, which form a discrete fracture network, play a significant role in the failure conditions and stability of the rock masses around underground excavations. Several continuum numerical methods have been used to study the stability of underground excavations in jointed rock masses but only few of them can take into account the influence of the pre-existing natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007